Introduction to Machine Learning with R and mlr3

Bernd Bischl & Marvin N. Wright

DAGStat, March 2025

PART 1

ML Basics: Data, Model, Learner, ERM

Learner Overview

Performance Estimation

Performance Measures

WHAT IS ML?

"A computer program is said to learn from experience E with respect to some task T and some performance measure P, if its performance on T, as measured by P, improves with experience E."

Tom Mitchell, Carnegie Mellon University, 1998

 \Rightarrow 99 % of this lecture is about **supervised learning**:

Labeled Training Data

ML Basics: Data, Model, Learner, ERM

Output

TASKS

- Supervised tasks are labeled data situations where the goal is to learn the functional relationship between inputs (features) and output (target)
- We distinguish between regression and classification tasks, depending on whether the target is numerical or categorical

Regression: Target is **numerical**, e.g., predict days a patient has to stay in hospital

Classification: Target is **categorical**, e.g., predict one of two risk categories for a life insurance customer

MODELS AND PARAMETERS

A model is a function that maps features to predicted targets

- For finding the model that describes the relation between features and target best, one needs to restrict the set of all possible functions
- This restricted set of functions is called hypothesis space. E.g., one could consider only simple linear functions as hypothesis space
- Functions are fully determined by parameters. E.g., in the case of linear functions, $y = \theta_0 + \theta_1 x$, the parameters θ_0 (intercept) and θ_1 (slope) determine the relationship between y and x
- Finding the optimal model means finding the optimal set of parameters

LEARNER

- Learns automatically the relation between features and target given a set of training data
- Learner picks the best element of the **hypothesis space**, i.e., the function that fits the training data best

Regression:

Classification:

LEARNER

 Learner uses labeled training data to learn a model f. This model is applied to new data for predicting the target variable

Train Set

LOSS AND RISK MINIMIZATION

• Loss: Measured pointwise for each observation, e.g., L2-loss

$$L(y, f(\mathbf{x})) = (y - f(\mathbf{x}))^2$$

Risk: Measured for entire model. Sums up pointwise losses.

$$\mathcal{R}_{emp}(f) = \sum_{i=1}^{n} L\left(y^{(i)}, f\left(\mathbf{x}^{(i)}\right)\right)$$

Squared loss of one observation.

Empirical **risk** of entire **model**

EMPIRICAL RISK MINIMIZATION

- ullet The risk surface visualizes the empirical risk for all possible parameter values of the parameter vector ullet
- Minimizing the empirical risk is usually done by numerical optimization

$$\hat{ heta} = \mathop{\mathrm{arg\,min}}_{ heta \in \Theta} \mathcal{R}_{\mathsf{emp}}(heta).$$

ML Basics: Data, Model, Learner, ERM

CLASSIFICATION TASKS

- Learn function that assigns categorical class labels to observations
- Each observation belongs to exactly one class
- The task can contain two (binary) or multiple (multi-class) classes

Training

Prediction

Input: Unlabeled data						Prediction		
Sex	Age	Health	Degree of Graduation	Level of Happiness		Classifier		Level of Happiness
Male	41	Fair	Bachelor	?				Not too happy
Male	35	Good	Bachelor	?				Pretty happy
Female	22	Fair	High School	?				Not too happy

BASIC DEFINITIONS

- For every observation a model outputs the probability (probabilistic classifier) or score (scoring classifier) of each class
- In the multi-class case, the class label is usually assigned by choosing the class with the maximum score or probability
- In the binary case, a class label is assigned by choosing the class whose probability or score exceeds a threshold value c

THRESHOLDING

- For imbalanced cases or class with costs, we might want to deviate from the standard conversion of scores to classes
- Introduce basic concept (for binary case) and add details later
- Convert scores or probabilities to class outputs by thresholding: $h(\mathbf{x}) := [\pi(\mathbf{x}) \ge c]$ or $h(\mathbf{x}) := [f(\mathbf{x}) \ge c]$ for some threshold c
- Standard thresholds: c = 0.5 for probabilities, c = 0 for scores

THRESHOLDING

- For imbalanced cases or class with costs, we might want to deviate from the standard conversion of scores to classes
- Introduce basic concept (for binary case) and add details later
- Convert scores or probabilities to class outputs by thresholding: $h(\mathbf{x}) := [\pi(\mathbf{x}) \ge c]$ or $h(\mathbf{x}) := [f(\mathbf{x}) \ge c]$ for some threshold c
- Standard thresholds: c = 0.5 for probabilities, c = 0 for scores

ML Basics: Data, Model, Learner, ERM

PART 1

ML Basics: Data, Model, Learner, ERM

Learner Overview

Performance Estimation

Performance Measures

Learner Overview 14 / 57

K-NN – METHOD SUMMARY

REGRESSION

CLASSIFICATION

NONPARAMETRIC

WHITE-BOX

General idea

- similarity in feature space (w.r.t. certain distance metric $d(\mathbf{x}^{(i)}, \mathbf{x})) \rightsquigarrow$ similarity in target space
- Prediction for x: construct k-neighborhood $N_k(\mathbf{x})$ from k points closest to x in \mathcal{X} , then predict

• (weighted) mean target for **regression**:
$$\hat{y} = \frac{1}{\sum\limits_{i:\mathbf{x}^{(i)} \in N_k(\mathbf{x})} w_i} \sum\limits_{i:\mathbf{x}^{(i)} \in N_k(\mathbf{x})} w_i y^{(i)}$$
 with $w_i = \frac{1}{d(\mathbf{x}^{(i)},\mathbf{x})}$

- \rightarrow optional: higher weights w_i for close neighbors
- most frequent class for **classification**: $\hat{y} = \underset{\ell \in \{1, ..., g\}}{\arg \max} \sum_{i, \mathbf{x}^{(i)} \in N_{\ell}(\mathbf{x})} \mathbb{I}(y^{(i)} = \ell)$

$$\Rightarrow$$
 Estimating posterior probabilities as $\hat{\pi}_{\ell}(\mathbf{x}^{(i)}) = \frac{1}{k} \sum_{i:\mathbf{x}^{(i)} \in N_{\ell}(\mathbf{x})} \mathbb{I}(y^{(i)} = \ell)$

- **Nonparametric** behavior: parameters = training data; no compression of information
- Not immediately interpretable, but inspection of neighborhoods can be revealing

K-NN - METHOD SUMMARY

Hyperparameters Neighborhood **size** *k* (locality), **distance** metric (next page)

Classification

Left: Neighborhood for exemplary observation in iris, k=50 Middle: Prediction surface for k=1 Right: Prediction surface for k=50

Regression

Left: Prediction surface for k=3Middle: Prediction surface for k=7Right: Prediction surface for k=15

- Small $k \Rightarrow$ very local, "wiggly" decision boundaries
- Large $k \Rightarrow$ rather global, smooth decision boundaries

CART – METHOD SUMMARY

REGRESSION

CLASSIFICATION

NONPARAMETRIC

WHITE-BOX

FEATURE SELECTION

General idea (CART – Classification and Regression Trees)

- Start at root node containing all data
- Perform repeated axis-parallel binary splits in feature space to obtain rectangular partitions at terminal nodes Q₁,...,Q_M
- Splits based on reduction of node impurity
 → empirical risk minimization (ERM)
- In each step:
 - Find optimal split (feature-threshold combination)
 → greedy search
 - Assign constant prediction c_m to all obs. in Q_m
 - ightarrow Regression: c_m is average of y
 - ightarrow Classif.: c_m is majority class (or class proportions)
 - Stop when a pre-defined criterion is reached
 - → See Complexity control

Hypothesis space
$$\mathcal{H} = \left\{ f(\mathbf{x}) : f(\mathbf{x}) = \sum_{m=1}^{M} c_m \mathbb{I}(\mathbf{x} \in Q_m) \right\}$$

CART – METHOD SUMMARY

Empirical risk

• Splitting **feature** x_j **at split point** t divides a parent node $\mathcal N$ into two child nodes:

$$\mathcal{N}_1 = \{(\mathbf{x}, y) \in \mathcal{N} : x_j \leq t\} \text{ and } \mathcal{N}_2 = \{(\mathbf{x}, y) \in \mathcal{N} : x_j > t\}$$

Compute empirical risks in child nodes and minimize their sum to find best split (impurity reduction):

$${\rm arg\,min}_{j,t}\,\mathcal{R}(\mathcal{N},j,t)={\rm arg\,min}_{j,t}\,\mathcal{R}(\mathcal{N}_1)+\mathcal{R}(\mathcal{N}_2)$$

Note: If \mathcal{R} is the average instead of the sum of loss functions, we need to reweight: $\frac{|\mathcal{N}_t|}{|\mathcal{N}|}\mathcal{R}(\mathcal{N}_t)$

- In general, compatible with arbitrary losses typical choices:
 - *g*-way classification:

Optimization

- Exhaustive search over all split candidates, choice of risk-minimal split
- In practice: reduce number of split candidates (e.g., using quantiles instead of all observed values)

RANDOM FORESTS – METHOD SUMMARY

REGRESSION

CLASSIFICATION

NONPARAMETRIC

BLACK-BOX

FEATURE SELECTION

General idea

- Bagging ensemble of *M* tree base learners fitted on bootstrap data samples
 - ⇒ Reduce variance by ensembling while slightly increasing bias by bootstrapping
 - Use unstable, high-variance base learners by letting trees grow to full size
 - Promoting **decorrelation** by random subset of candidate features for each split
- Predict via averaging (regression) or majority vote (classification) of base learners

Hypothesis space
$$\mathcal{H} = \left\{ f(\mathbf{x}) : f(\mathbf{x}) = \frac{1}{M} \sum_{m=1}^{M} \sum_{t=1}^{T^{[m]}} c_t^{[m]} \mathbb{I}(\mathbf{x} \in Q_t^{[m]}) \right\}$$

Schematic depiction of bagging process

Prediction surface for iris data with 500-tree ensemble

RANDOM FORESTS – METHOD SUMMARY

Empirical risk & Optimization Just like tree base learners

Out-of-bag (OOB) error

- Ensemble prediction for obs. outside individual trees' bootstrap training sample ⇒ unseen test sample
- Use resulting loss as unbiased estimate of generalization error
- Mainly useful for tuning and less for model comparison as we usually compare all models uniformly by CV

Feature importance

- Based on improvement in split criterion: aggregate improvements by all splits using j-th feature
- Based on **permutation:** permute *j*-th feature in OOB observations and compute impact on OOB error

Hyperparameters

- Ensemble size, i.e., number of trees
- Complexity of base learners, e.g., tree depth, min-split, min-leaf-size
- Number of split candidates, i.e., number of features to be considered at each split
 - \Rightarrow frequently used heuristics with total of p features: $\lfloor \sqrt{p} \rfloor$ for classification, $\lfloor p/3 \rfloor$ for regression

GRADIENT BOOSTING – METHOD SUMMARY

REGRESSION

CLASSIFICATION

(NON)PARAMETRIC

BLACK-BOX

FEATURE SELECTION

General idea

• Sequential ensemble of M base learners by greedy forward stagewise additive modeling

10.0

- In each iteration a base learner is fitted to current pseudo residuals ⇒ one boosting iteration is one approximate gradient step in function space
- Base learners are typically trees, linear regressions or splines

7.5

• Predict via (weighted) sum of base learners

Hypothesis space
$$\mathcal{H} = \left\{ f(\mathbf{x}) : f(\mathbf{x}) = \sum_{m=1}^{M} \beta^{[m]} b(\mathbf{x}, \boldsymbol{\theta}^{[m]}) \right\}$$

Boosting prediction function with GAM base learners for univariate regression problem after 10 iterations

5.0

Boosting prediction surface with tree base learners for iris data after 100 iterations (right: contour lines of discriminant functions)

GRADIENT BOOSTING – METHOD SUMMARY

Empirical risk

- In general, compatible with any differentiable loss
- Base learner in iteration *m* is fitted on **Pseudo residuals**:

$$\tilde{r}^{(i)} = -\frac{\partial L(y^{(i)}, t(\mathbf{x}^{(i)}))}{\partial t(\mathbf{x}^{(i)})}$$
 by minimizing the **L2-loss**: $\sum_{i=1}^{n} (\tilde{r}^{(i)} - b(\mathbf{x}^{(i)}, \boldsymbol{\theta}))^2$

Optimization

- Same optimization procedure as base learner, while keeping the current ensemble f̂^[m-1] fixed
 ⇒ Efficient and generally applicable since *inner* loss is always L2
- $\beta^{[m]}$ is found via **line search** or fixed to a **small constant value** and combined with the leaf values $c_i^{[m]}$ for tree base learners: $\tilde{c}_i^{[m]} = \beta^{[m]} \cdot c_i^{[m]}$

Hyperparameters

- Ensemble size, i.e., number of base learners
- Complexity of base learners (depending on type used)
- Learning rate β , i.e., impact of next base learner

GRADIENT BOOSTING – PRACTICAL HINTS

Scalable Gradient Boosting

- Feature and data subsampling for each base learner fit
- Parallelization and approximate split finding for tree base learners
- GPU accelaration

Explainable / Componentwise Gradient Boosting

- Base learners of simple linear regression models or splines, selecting a single feature in each iteration
- Allows feature selection and creates an interpretable model since uni- and bivariate effects can be visualized directly.
- Feature interactions can be learned via ranking techniques (e.g., GA²M FAST)

Tuning

- Use early-stopping to determine ensemble size
- Various regularization parameters, e.g., L1/L2, number of leaves, ... that need to be carefully tuned
- Tune learning rate and base learner complexity hyperparameters on log-scale

NEURAL NETWORKS – METHOD SUMMARY

REGRESSION

CLASSIFICATION

(NON)PARAMETRIC

BLACK-BOX

General idea

- Learn composite function through series of nonlinear feature transformations, represented as neurons, organized hierarchically in layers
 - Basic neuron operation: 1) affine transformation ϕ (weighted sum of inputs), 2) nonlinear activation σ
 - Combinations of simple building blocks to create a complex model
- Optimize via mini-batch stochastic gradient descent (SGD) variants:
 - Gradient of each weight can be infered from the computational graph of the network
 → Automatic Differentiation (AutoDiff)
 - Algorithm to compute weight updates based on the loss is called **Backpropagation**

$$\text{Hypothesis space} \quad \mathcal{H} = \left\{ f(\mathbf{x}) : f(\mathbf{x}) = \tau \circ \phi \circ \sigma^{(h)} \circ \phi^{(h)} \circ \sigma^{(h-1)} \circ \phi^{(h-1)} \circ \dots \circ \sigma^{(1)} \circ \phi^{(1)}(\mathbf{x}) \right\}$$

NEURAL NETWORKS – METHOD SUMMARY

Architecture

- Input layer: original features x
- Hidden layers: nonlinear transformation of previous layer $\phi^{(h)} = \sigma^{(h-1)}(\phi^{(h-1)})$
- ullet Output layer: number of output neurons and activation depends on problem $au(\phi)$
 - $\bullet \ \ \text{Regression: one output neuron, } \tau = \text{identity}$
 - Binary classification: one output neuron, $\tau = \frac{1}{1 + \exp(-\theta^T \mathbf{x})}$ (logistic sigmoid)
 - Multiclass Classification: g output neurons, $\tau_j = \frac{\exp(f_j)}{\sum_{j=1}^g \exp(f_j)}$ (softmax)

Empirical risk In general, compatible with any differentiable loss

Optimization

- Variety of different optimizers, mostly based on some form of stochastic gradient descent (SGD)
- Improvements:
 - (1) Accumulation of previous gradients \rightarrow Momentum
 - (2) Weight specific scaling based on previous squared gradients \rightarrow RMSProb
 - \Rightarrow **ADAM** combines (1) and (2)
 - (3) Learning rate schedules, e.g., decaying or cyclical learning rates
- Training progress is measured in full passes over the full training data, called epochs
- Batch size is a hyperparameter and limited by input data dimension

NEURAL NETWORKS - METHOD SUMMARY

Network types Large variety of architectures for different data modelities

- Feedforward NNs / multi-layer perceptrons (MLPs): sequence of fully-connected layers ⇒ tabular data
- Convolutional NNs (CNNs): sequence of feature map extractors with spatial awareness ⇒ images, time series
- **Recurrent NNs (RNNs):** handling of sequential, variable-length information ⇒ times series, text, audio
- Transformers: Learning invariances from data, handling multiple/any data modalities

NEURAL NETWORKS – METHOD SUMMARY

Hyperparameters

Architecture:

- Lots of design choices ⇒ tuning problem of its own.
- Typically: hierachical optimization of components (cells) and macro structure of network
 - → Neural Architecture Search (NAS)
- Many predifined (well working) architectures exist for standard tasks

Training:

- Initial learning rate and various regularization parameters
- Number of epochs is determined by early-stopping
- Data-augmentation, e.g., applying random rotations to input images

Foundation models

- Enormous models trained on vast amounts of (general) data, e.g., all of wikipedia, in self-supervised
 fashion
- Used as starting point (pre-trained) and fine-tuned via transfer or few-shot learning for other tasks requiring little data
- Examples: GPT-3 for language, CLIP for vision-language, ...

PART 1

ML Basics: Data, Model, Learner, ERM

Learner Overview

Performance Estimation

Performance Measures

Performance Estimation 28 / 57

PERFORMANCE ESTIMATION

- For a trained model, we want to know its future performance.
- Training works by ERM on \mathcal{D}_{train} (inducer, loss, risk minimization):

$$\mathcal{I}: \mathbb{D} imes \mathbf{\Lambda} o \mathcal{H}, \quad (\mathcal{D}, oldsymbol{\lambda}) \mapsto \hat{\mathit{f}}_{\mathcal{D}, oldsymbol{\lambda}}.$$

$$\min_{\theta \in \Theta} \sum_{i=1}^{n} L\left(y^{(i)}, f\left(\mathbf{x}^{(i)} \mid \theta\right)\right)$$

- Due to effects like overfitting, we cannot simply use this training error to gauge our model, this is likely optimistically biased. (more on this later!)
- We want: the true expected loss, a.k.a. generalization error.
- To reliably estimate it, we need independent, unseen **test data**.

• This simply simulates the application of the model in reality.

Performance Estimation 29 / 57

GE FOR A FIXED MODEL

- GE for a fixed model: $GE(\hat{f}, L) := \mathbb{E}\left[L(y, \hat{f}(\mathbf{x}))\right]$ Expectation over a single, random test point $(\mathbf{x}, y) \sim \mathbb{P}_{xy}$.
- Estimator, if a dedicated test set is available (size m)

$$\widehat{\mathsf{GE}}(\hat{f}, L) := \frac{1}{m} \sum_{(\mathbf{x}, y) \in \mathcal{D}_{\text{test}}} \left[L\left(y, \hat{f}(\mathbf{x})\right) \right]$$

NB: Very often, no dedicated test-set is available, and what we describe here is not same as hold-out splitting (see later).

Performance Estimation 30 / 57

INNER VS OUTER LOSS

- Sometimes, we would like to evaluate our learner with a different loss L or metric ρ.
- Nomenclature: ERM and inner loss; evaluation and outer loss.
- Different losses, if computationally advantageous to deviate from outer loss of application; e.g., optimization faster with inner L2 or maybe no implementation for outer loss exists.

Example: Linear binary classifier / Logistic regression.

- Outside: We often want to eval with "nr of misclassifed examples", so 0-1 loss.
- Problem: 0-1 neither differentiable nor continuous. Hence: Inner loss = binomial. (0-1 actually NP hard).

Performance Estimation 31 / 57

TRAINING ERROR

Simply plugin predictions for data that model has been trained on:

$$ho(\mathbf{y}_{ ext{train}}, \mathbf{\emph{F}}_{ ext{train}})$$
 where $\mathbf{\emph{F}}_{ ext{train}} = egin{bmatrix} \hat{\emph{f}}_{\mathcal{D}_{ ext{train}}}(\mathbf{x}_{ ext{train}}^{(1)}) \ \dots \ \hat{\emph{f}}_{\mathcal{D}_{ ext{train}}}(\mathbf{x}_{ ext{train}}^{(m)}) \end{bmatrix}$

A.k.a. apparent error or resubstitution error.

Performance Estimation 32 / 57

EXAMPLE 2: POLYNOMIAL REGRESSION

Sample data from $0.5 + 0.4 \cdot \sin(2\pi x) + \epsilon$

We fit a d^{th} -degree polynomial:

$$f(\mathbf{x} \mid \boldsymbol{\theta}) = \theta_0 + \theta_1 \mathbf{x} + \dots + \theta_d \mathbf{x}^d = \sum_{i=0}^d \theta_i \mathbf{x}^i.$$

Performance Estimation 33 / 57

EXAMPLE 2: POLYNOMIAL REGRESSION

Simple model selection problem: Which *d*?

Visual inspection vs quantitative MSE on training set:

Using the train error chooses overfitting model of maximal complexity.

Performance Estimation 34 / 57

TEST ERROR AND HOLD-OUT SPLITTING

Simulate prediction on unseen data, to avoid optimistic bias:

$$ho(\mathbf{y}_{ ext{test}}, \mathbf{\emph{F}}_{ ext{test}})$$
 where $\mathbf{\emph{F}}_{ ext{test}} = egin{bmatrix} \hat{\emph{t}}_{\mathcal{D}_{ ext{train}}}(\mathbf{x}_{ ext{test}}^{(1)}) \ \dots \ \hat{\emph{t}}_{\mathcal{D}_{ ext{train}}}(\mathbf{x}_{ ext{test}}^{(m)}) \end{bmatrix}$

Partition data, e.g., 2/3 for train and 1/3 for test.

A.k.a. holdout splitting.

Performance Estimation 35 / 57

EXAMPLE: POLYNOMIAL REGRESSION

Previous example:

$$f(\mathbf{x} \mid \boldsymbol{\theta}) = \theta_0 + \theta_1 \mathbf{x} + \dots + \theta_d \mathbf{x}^d = \sum_{j=0}^d \theta_j \mathbf{x}^j.$$

Performance Estimation 36 / 57

EXAMPLE: POLYNOMIAL REGRESSION

- d = 1: MSE = 0.038: clearly underfitting
- d = 3: MSE = 0.002: pretty OK
- d = 9: MSE = 0.046: clearly overfitting

While train error monotonically decreases in d, test error shows that high-d polynomials overfit.

Performance Estimation 37 / 57

TEST ERROR

Let's plot train and test MSE for all d:

Increasing model complexity tends to cause

- a decrease in training error, and
- a U-shape in test error (first underfit, then overfit, sweet-spot in the middle).

Performance Estimation 38 / 57

UNDER- AND OVERFITTING IN REGRESSION

- Poly-Regression, on data from sinusoidal function
- LM underfits, high-d overfits

Performance Estimation 39 / 57

PART 1

ML Basics: Data, Model, Learner, ERM

Learner Overview

Performance Estimation

Performance Measures

Performance Measures 40 / 5

METRICS FOR REGRESSION

Commonly used evaluation metrics include:

- Sum of Squared Errors (SSE): $\rho_{SSE}(\mathbf{y}, \mathbf{F}) = \sum_{i=1}^{m} (y^{(i)} \hat{y}^{(i)})^2$
- Mean Squared Error (MSE): $\rho_{MSE}(\mathbf{y}, \mathbf{F}) = \frac{1}{m} \sum_{i=1}^{m} SSE$
- Root Mean Squared Error (RMSE): $\rho_{RMSE}(\mathbf{y}, \mathbf{F}) = \sqrt{MSE}$
- R-Squared: $\rho_{R^2}(\mathbf{y}, \mathbf{F}) = 1 \frac{\sum\limits_{i=1}^{m} (y^{(i)} \hat{y}^{(i)})^2}{\sum\limits_{i=1}^{m} (y^{(i)} \bar{y})^2}$
- Mean Absolute Error (MAE):

$$ho_{\mathsf{MAE}}(\mathbf{y}, \mathbf{F}) = \frac{1}{m} \sum_{i=1}^{m} |y^{(i)} - \hat{y}^{(i)}| \in [0; \infty)$$

Performance Measures 41 / 57

METRICS FOR CLASSIFICATION

Commonly used evaluation metrics include:

Accuracy:

$$\rho_{ACC} = \frac{1}{m} \sum_{i=1}^{m} [y^{(i)} = \hat{y}^{(i)}] \in [0, 1].$$

Misclassification error (MCE):

$$\rho_{MCE} = \frac{1}{m} \sum_{i=1}^{m} [y^{(i)} \neq \hat{y}^{(i)}] \in [0, 1].$$

• Brier Score:

$$\rho_{BS} = \frac{1}{m} \sum_{i=1}^{m} (\hat{\pi}^{(i)} - y^{(i)})^2$$

Log-loss:

$$\rho_{LL} = \frac{1}{m} \sum_{i=1}^{m} \left(-y^{(i)} \log \left(\hat{\pi}^{(i)} \right) - \left(1 - y^{(i)} \right) \log \left(1 - \hat{\pi}^{(i)} \right) \right).$$

The probabalistic metrics, Brier Score and Log-Loss penalize false confidence, i.e. predicting the wrong label with high probability, heavily.

Performance Measures 42 / 57

PROBABILITIES: BRIER SCORE

Measures squared distances of probabilities from the true class labels:

$$\rho_{BS} = \frac{1}{m} \sum_{i=1}^{m} \left(\hat{\pi}^{(i)} - y^{(i)} \right)^2$$

- Fancy name for MSE on probabilities.
- Usual definition for binary case; $y^{(i)}$ must be encoded as 0 and 1.

Performance Measures 43 / 57

PROBABILITIES: LOG-LOSS

Logistic regression loss function, a.k.a. Bernoulli or binomial loss, $y^{(i)}$ encoded as 0 and 1.

$$\rho_{LL} = \frac{1}{m} \sum_{i=1}^{m} \left(-y^{(i)} \log \left(\hat{\pi}^{(i)} \right) - \left(1 - y^{(i)} \right) \log \left(1 - \hat{\pi}^{(i)} \right) \right).$$

• Optimal value is 0, "confidently wrong" is penalized heavily.

• Multi-class version: $\rho_{LL,MC} = -\frac{1}{m} \sum_{i=1}^{m} \sum_{k=1}^{g} o_k^{(i)} \log \left(\hat{\pi}_k^{(i)} \right)$.

Performance Measures 44 / 57

LABELS: MCE & ACC

The **misclassification error rate (MCE)** counts the number of incorrect predictions and presents them as a rate:

$$\rho_{MCE} = \frac{1}{m} \sum_{i=1}^{m} [y^{(i)} \neq \hat{y}^{(i)}] \in [0, 1].$$

Accuracy (ACC) is defined in a similar fashion for correct classifications:

$$\rho_{ACC} = \frac{1}{m} \sum_{i=1}^{m} [y^{(i)} = \hat{y}^{(i)}] \in [0, 1].$$

- If the data set is small this can be brittle.
- MCE says nothing about how good/skewed predicted probabilities are.
- Errors on all classes are weighted equally, which is often inappropriate.

Performance Measures 45 / 57

CLASS IMBALANCE

- Assume a binary classifier diagnoses a serious medical condition.
- Label distribution is often imbalanced, i.e, not many people have the disease.
- Evaluating on mce is often inappropriate for scenarios with imbalanced labels:
 - Assume that only 0.5 % have the disease.
 - Always predicting "no disease" has an mce of 0.5%, corresponding to very high accuracy.
 - ullet This sends all sick patients home o bad system
- This problem is known as the accuracy paradox.

Performance Measures 46 / 57

IMBALANCED COSTS

- Another point of view is imbalanced costs.
- In our example, classifying a sick patient as healthy should incur a much higher cost than classifying a healthy patient as sick.
- The costs depend a lot on what happens next: we can well assume that our system is some type of screening filter, and often the next step after labeling someone as sick might be a more invasive, expensive, but also more reliable test for the disease.
- Erroneously subjecting someone to this step is undesirable (psychological, economic, medical expense), but sending someone home to get worse or die seems much more so.
- Such situations not only arise under label imbalance, but also when costs differ (even though classes might be balanced).
- We could see this as imbalanced costs of misclassification, rather than imbalanced labels; both situations are tightly connected.

Performance Measures 47 / 57

LABELS: ROC METRICS

From the confusion matrix (binary case), we can calculate "ROC" metrics.

		True C		
		+	_	
Pred.	+	TP	FP	$ ho_{ extsf{PPV}} = rac{ extsf{TP}}{ extsf{TP+FP}}$
ŷ	-	FN	TN	$ ho_{ m NPV}=rac{ m TN}{ m FN+TN}$
		$ ho_{\mathit{TPR}} = \frac{\mathit{TP}}{\mathit{TP} + \mathit{FN}}$	$ ho_{\mathrm{TNR}} = rac{\mathrm{TN}}{\mathrm{FP} + \mathrm{TN}}$	$ ho_{ extit{ACC}} = rac{ ext{TP+TN}}{ ext{TOTAL}}$

- True positive rate ρ_{TPB} : how many of the true 1s did we predict as 1?
- True Negative rate ρ_{TNR} : how many of the true 0s did we predict as 0?
- Positive predictive value ρ_{PPV} : if we predict 1, how likely is it a true 1?
- Negative predictive value ρ_{NPV} : if we predict 0, how likely is it a true 0?

• Accuracy ρ_{ACC} : how many instances did we predict correctly?

Performance Measures 48 / 57

MORE METRICS AND ALTERNATIVE TERMINOLOGY

Unfortunately, for many concepts in ROC, 2-3 different terms exist.

		True condition				
	Total population	Condition positive	Condition negative	$= \frac{\text{Prevalence}}{\sum \text{Total population}}$	Accuracy Σ True positive + Σ Total po	Σ True negative
Predicted	Predicted condition positive	True positive, Power	False positive, Type I error	Positive predictive value (PPV), Precision = Σ True positive Σ Predicted condition positive	False discovery Σ False μ Σ Predicted con	ositive
condition	Predicted condition negative	False negative, Type II error	True negative	False omission rate (FOR) = Σ False negative Σ Predicted condition negative	Negative predictive value (NPV) = Σ True negative Σ Predicted condition negative	
		True positive rate (TPR), Recall, Sensitivity, probability of detection $= \frac{\Sigma \text{ True positive}}{\Sigma \text{ Condition positive}}$	False positive rate (FPR), Fall-out, probability of false alarm $= \frac{\Sigma \text{ False positive}}{\Sigma \text{ Condition negative}}$	Positive likelihood ratio (LR+) = TPR FPR	Diagnostic odds ratio (DOR)	F ₁ score =
		False negative rate (FNR), Miss rate = $\frac{\Sigma}{\Sigma}$ False negative $\frac{\Sigma}{\Sigma}$ Condition positive	$Specificity (SPC), \\ Selectivity, True negative \\ rate (TNR) \\ = \frac{\Sigma \ True \ negative}{\Sigma \ Condition \ negative}$	Negative likelihood ratio (LR-) $= \frac{FNR}{TNR}$	= <u>LR+</u> LR-	Recall + Precision 2

► Clickable version/picture source

► Interactive diagram

Performance Measures 49 / 5

LABELS: F₁ MEASURE

- It is difficult to achieve high positive predictive value and high true positive rate simultaneously.
- A classifier predicting more positive will be more sensitive (higher ρ_{TPR}), but it will also tend to give more *false* positives (lower ρ_{TNR} , lower ρ_{PPV}).
- A classifier that predicts more negatives will be more precise (higher ρ_{PPV}), but it will also produce more *false* negatives (lower ρ_{TPR}).

The F_1 score balances two conflicting goals:

- Maximizing positive predictive value
- Maximizing true positive rate

 ρ_{F_1} is the harmonic mean of ρ_{PPV} and ρ_{TPR} :

$$ho_{F_1} = 2 \cdot rac{
ho_{PPV} \cdot
ho_{TPR}}{
ho_{PPV} +
ho_{TPR}}$$

Note that this measure still does not account for the number of true negatives.

Performance Measures 50 / 57

WHICH METRIC TO USE?

- As we have seen, there is a plethora of methods.
 - \rightarrow This leaves practitioners with the question of which to use.
- Consider a small benchmark study.
 - We let k-NN, logistic regression, a classification tree, and a random forest compete on classifying the credit risk data.
 - The data consist of 1000 observations of borrowers' financial situation and their creditworthiness (good/bad) as target.
 - Predicted probabilities are thresholded at 0.5 for the positive class.
 - Depending on the metric we use, learners are ranked differently according to performance (value of respective performance measure in parentheses):

Performance Measures 51 / 57

LABELS: ROC SPACE

- For comparing classifiers, we characterize them by their TPR and FPR values and plot them in a coordinate system.
- We could also use two different ROC metrics which define a trade-off, for instance, TPR and PPV.

$$TPR = \frac{TP}{TP + FN}$$

$$FPR = \frac{FP}{FP + TN}$$

Performance Measures 52 / 57

FROM PROBABILITIES TO LABELS: ROC CURVE

Remember: Both probabilistic and scoring classifiers can output classes by thresholding:

$$h(\mathbf{x}) = [\pi(\mathbf{x}) \ge c]$$
 or $h(\mathbf{x}) = [f(\mathbf{x}) \ge c_f]$.

To draw a ROC curve:

- Rank test observations on decreasing score.
- Start with c = 1, so we start in (0,0); we predict everything as negative.
- Iterate through all possible thresholds *c* and proceed for each observation *x* as follows:
 - If x is positive, move TPR $1/n_+$ up, as we have one TP more.
 - If x is negative, move FPR 1/n_ right, as we have one FP more.

Performance Measures 53 / 57

DRAWING ROC CURVES

#	Truth	Score
1	Pos	0.95
2	Pos	0.86
3	Pos	0.69
4	Neg	0.65
5	Pos	0.59
6	Neg	0.52
7	Pos	0.51
8	Neg	0.39
9	Neg	0.28
10	Neg	0.18
11	Pos	0.15
12	Neg	0.06

$$c = 0.3$$

 $\rightarrow \text{TPR} = 0.833$
 $\rightarrow \text{FPR} = 0.5$

Performance Measures 54 / 57

DRAWING ROC CURVES

#	Truth	Score
1	Pos	0.95
2	Pos	0.86
3	Pos	0.69
4	Neg	0.65
5	Pos	0.59
6	Neg	0.52
7	Pos	0.51
8	Neg	0.39
9	Neg	0.28
10	Neg	0.18
11	Pos	0.15
12	Neg	0.06

$$c = 0$$

 $\rightarrow \text{TPR} = 1$
 $\rightarrow \text{FPR} = 1$

Performance Measures 55 / 57

ROC CURVE PROPERTIES

- The closer the curve to the top-left corner, the better.
- If ROC curves cross, a different model might be better in different parts of the ROC space.

- Small thresholds will very liberally predict the positive class, and result in a potentially higher FPR, but also higher TPR.
- High thresholds will very conservatively predict the positive class, and result in a lower FPR and TPR.
- As we have not defined the trade-off between false positive and false negative costs, we cannot easily select the "best" threshold.

ightarrow Visual inspection of all possible results seems useful.

Performance Measures 56 / 57

AUC: AREA UNDER ROC CURVE

- AUC ∈ [0, 1] is a single metric to evaluate scoring classifiers independent of the chosen threshold.
 - AUC = 1: perfect classifier
 - AUC = 0.5: random, non-discriminant classifier
 - AUC = 0: perfect, with inverted labels

Performance Measures 57 / 57