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WHAT IS ML?

“A computer program is said to learn from experience E with respect to
some task T and some performance measure P, if its performance on T,
as measured by P, improves with experience E.”
Tom Mitchell, Carnegie Mellon University, 1998

⇒ 99 % of this lecture is about supervised learning:

Training

Prediction
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TASKS

Supervised tasks are labeled data situations where the goal is to
learn the functional relationship between inputs (features) and
output (target)
We distinguish between regression and classification tasks,
depending on whether the target is numerical or categorical

Regression: Target is
numerical, e.g., predict days a
patient has to stay in hospital

Classification: Target is
categorical, e.g., predict one
of two risk categories for a life
insurance customer

© Introduction to Machine Learning – 2 / 7
ML Basics: Data, Model, Learner, ERM 4 / 57



MODELS AND PARAMETERS

A model is a function that maps features to predicted targets

For finding the model that describes the relation between features and
target best, one needs to restrict the set of all possible functions

This restricted set of functions is called hypothesis space. E.g., one
could consider only simple linear functions as hypothesis space

Functions are fully determined by parameters. E.g., in the case of linear
functions, y = θ0 + θ1x , the parameters θ0 (intercept) and θ1 (slope)
determine the relationship between y and x

Finding the optimal model means finding the optimal set of parameters

© Introduction to Machine Learning – 3 / 7
ML Basics: Data, Model, Learner, ERM 5 / 57



LEARNER

Learns automatically the relation between features and target –
given a set of training data

Learner picks the best element of the hypothesis space, i.e., the
function that fits the training data best

Regression: Classification:
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LEARNER

Learner uses labeled training data to learn a model f . This model
is applied to new data for predicting the target variable
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LOSS AND RISK MINIMIZATION

Loss: Measured pointwise for each observation, e.g., L2-loss

L (y , f (x)) = (y − f (x))2

Risk: Measured for entire model. Sums up pointwise losses.

Remp(f ) =
n∑

i=1
L
(
y (i), f

(
x(i)
))

Squared loss of one observation. Empirical risk of entire model
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EMPIRICAL RISK MINIMIZATION

The risk surface visualizes the empirical risk for all possible parameter
values of the parameter vector θ

Minimizing the empirical risk is usually done by numerical optimization

θ̂ = argminθ∈ΘRemp(θ).
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CLASSIFICATION TASKS

Learn function that assigns categorical class labels to observations
Each observation belongs to exactly one class
The task can contain two (binary) or multiple (multi-class) classes

Training

Prediction
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BASIC DEFINITIONS

For every observation a model outputs the probability (probabilistic
classifier) or score (scoring classifier) of each class

In the multi-class case, the class label is usually assigned by choosing
the class with the maximum score or probability

In the binary case, a class label is assigned by choosing the class whose
probability or score exceeds a threshold value c
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THRESHOLDING

For imbalanced cases or class with costs, we might want to
deviate from the standard conversion of scores to classes

Introduce basic concept (for binary case) and add details later

Convert scores or probabilities to class outputs by thresholding:

h(x) := [π(x) ≥ c] or h(x) := [f (x) ≥ c] for some threshold c

Standard thresholds: c = 0.5 for probabilities, c = 0 for scores
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K -NN – METHOD SUMMARY
REGRESSION CLASSIFICATION NONPARAMETRIC WHITE-BOX

General idea

similarity in feature space (w.r.t. certain distance metric d(x(i), x)) similarity in target space
Prediction for x: construct k -neighborhood Nk (x) from k points closest to x in X , then predict

(weighted) mean target for regression: ŷ = 1∑

i:x(i)∈Nk (x)

wi

∑
i:x(i)∈Nk (x)

wi y (i) with wi = 1
d(x(i),x)

→ optional: higher weights wi for close neighbors
most frequent class for classification: ŷ = arg max

`∈{1,...,g}

∑
i:x(i)∈Nk (x)

I(y (i) = `)

⇒ Estimating posterior probabilities as π̂`(x(i)) = 1
k

∑
i:x(i)∈Nk (x)

I(y (i) = `)

Nonparametric behavior: parameters = training data; no compression of information
Not immediately interpretable, but inspection of neighborhoods can be revealing
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K -NN – METHOD SUMMARY

Hyperparameters Neighborhood size k (locality), distance metric (next page)

π̂(xi) = (0, 0.44, 0.56)π̂(xi) = (0, 0.44, 0.56)π̂(xi) = (0, 0.44, 0.56)π̂(xi) = (0, 0.44, 0.56)π̂(xi) = (0, 0.44, 0.56)π̂(xi) = (0, 0.44, 0.56)π̂(xi) = (0, 0.44, 0.56)π̂(xi) = (0, 0.44, 0.56)π̂(xi) = (0, 0.44, 0.56)
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Classification
Left : Neighborhood for exemplary
observation in iris, k = 50
Middle: Prediction surface for k = 1
Right : Prediction surface for k = 50

Regression
Left : Prediction surface for k = 3
Middle: Prediction surface for k = 7
Right : Prediction surface for k = 15

Small k ⇒ very local, "wiggly" decision boundaries
Large k ⇒ rather global, smooth decision boundaries
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CART – METHOD SUMMARY
REGRESSION CLASSIFICATION NONPARAMETRIC WHITE-BOX FEATURE SELECTION

General idea (CART – Classification and Regression Trees)

Start at root node containing all data
Perform repeated axis-parallel binary splits in feature
space to obtain rectangular partitions at terminal nodes
Q1, . . . ,QM

Splits based on reduction of node impurity
→ empirical risk minimization (ERM)
In each step:

Find optimal split (feature-threshold combination)
→ greedy search
Assign constant prediction cm to all obs. in Qm

→ Regression: cm is average of y
→ Classif.: cm is majority class (or class proportions)
Stop when a pre-defined criterion is reached
→ See Complexity control
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Hypothesis space H =

{
f (x) : f (x) =

M∑
m=1

cmI(x ∈ Qm)

}
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CART – METHOD SUMMARY
Empirical risk

Splitting feature xj at split point t divides a parent node N
into two child nodes:

N1 = {(x, y) ∈ N : xj ≤ t} and N2 = {(x, y) ∈ N : xj > t}

N

⇒c

xj

y

N1 N2

t

c1

c2

xj

y

Compute empirical risks in child nodes and minimize their sum to find best split (impurity reduction):

arg minj,t R(N , j, t) = arg minj,t R(N1) +R(N2)

Note: IfR is the average instead of the sum of loss functions, we need to reweight: |Nt |
|N|R(Nt )

In general, compatible with arbitrary losses – typical choices:
g-way classification:

Brier score→ Gini impurity Bernoulli loss→ entropy impurity

R(N ) =
∑

(x,y)∈N

g∑
k=1

π̂k
(N )(1− π̂k

(N )) R(N ) = − ∑
(x,y)∈N

g∑
k=1

π̂k
(N ) log π̂k

(N )

Regression (quadratic loss): R(N ) =
∑

(x,y)∈N
(y − c)2 with c = 1

|N|
∑

(x,y)∈N
y

Optimization

Exhaustive search over all split candidates, choice of risk-minimal split
In practice: reduce number of split candidates (e.g., using quantiles instead of all observed values)
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RANDOM FORESTS – METHOD SUMMARY
REGRESSION CLASSIFICATION NONPARAMETRIC BLACK-BOX FEATURE SELECTION

General idea

Bagging ensemble of M tree base learners fitted on bootstrap data samples
⇒ Reduce variance by ensembling while slightly increasing bias by bootstrapping

Use unstable, high-variance base learners by letting trees grow to full size
Promoting decorrelation by random subset of candidate features for each split

Predict via averaging (regression) or majority vote (classification) of base learners

Hypothesis space H =

{
f (x) : f (x) = 1

M

M∑
m=1

T [m]∑
t=1

c[m]
t I(x ∈ Q[m]

t )

}

Schematic depiction of bagging process
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RANDOM FORESTS – METHOD SUMMARY
Empirical risk & Optimization Just like tree base learners

Out-of-bag (OOB) error

Ensemble prediction for obs. outside individual trees’ bootstrap training sample⇒ unseen test sample
Use resulting loss as unbiased estimate of generalization error
Mainly useful for tuning and less for model comparison as we usually compare all models uniformly by CV

Feature importance

Based on improvement in split criterion: aggregate improvements by all splits using j-th feature
Based on permutation: permute j-th feature in OOB observations and compute impact on OOB error

Hyperparameters

Ensemble size, i.e., number of trees
Complexity of base learners, e.g., tree depth, min-split, min-leaf-size
Number of split candidates, i.e., number of features to be considered at each split
⇒ frequently used heuristics with total of p features: b√pc for classification, bp/3c for regression
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GRADIENT BOOSTING – METHOD SUMMARY
REGRESSION CLASSIFICATION (NON)PARAMETRIC BLACK-BOX FEATURE SELECTION

General idea

Sequential ensemble of M base learners by greedy forward stagewise additive modeling
In each iteration a base learner is fitted to current pseudo residuals⇒ one boosting iteration is
one approximate gradient step in function space
Base learners are typically trees, linear regressions or splines

Predict via (weighted) sum of base learners

Hypothesis space H =
{

f (x) : f (x) =
∑M

m=1 β
[m]b(x,θ[m])

}

Boosting prediction function with GAM base learners for univariate
regression problem after 10 iterations

Boosting prediction surface with tree base learners for iris data after 100
iterations (right: contour lines of discriminant functions)

LMU SLDS © Important Learning Algorithms in ML – 26 / 48

Learner Overview 21 / 57



GRADIENT BOOSTING – METHOD SUMMARY
Empirical risk

In general, compatible with any differentiable loss
Base learner in iteration m is fitted on Pseudo residuals:

r̃ (i) = − ∂L(y(i),f(x(i)))
∂f(x(i))

by minimizing the L2-loss:
n∑

i=1
(r̃ (i) − b(x(i),θ))2

Optimization

Same optimization procedure as base learner, while keeping the current ensemble f̂ [m−1] fixed
⇒ Efficient and generally applicable since inner loss is always L2
β[m] is found via line search or fixed to a small constant value and combined with the leaf values c[m]

t for
tree base learners: c̃[m]

t = β[m] · c[m]
t

Hyperparameters

Ensemble size, i.e., number of base learners
Complexity of base learners (depending on type used)
Learning rate β, i.e., impact of next base learner
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GRADIENT BOOSTING – PRACTICAL HINTS
Scalable Gradient Boosting

Feature and data subsampling for each base learner fit
Parallelization and approximate split finding for tree base learners
GPU accelaration

Explainable / Componentwise Gradient Boosting

Base learners of simple linear regression models or splines, selecting a single feature in each iteration
Allows feature selection and creates an interpretable model since uni- and bivariate effects can be
visualized directly.
Feature interactions can be learned via ranking techniques (e.g., GA2M FAST)

Tuning

Use early-stopping to determine ensemble size
Various regularization parameters, e.g., L1/L2, number of leaves, ... that need to be carefully tuned
Tune learning rate and base learner complexity hyperparameters on log-scale
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NEURAL NETWORKS – METHOD SUMMARY
REGRESSION CLASSIFICATION (NON)PARAMETRIC BLACK-BOX

General idea

Learn composite function through series of nonlinear feature transformations, represented as neurons,
organized hierarchically in layers

Basic neuron operation: 1) affine transformation φ (weighted sum of inputs), 2) nonlinear
activation σ
Combinations of simple building blocks to create a complex model

Optimize via mini-batch stochastic gradient descent (SGD) variants:
Gradient of each weight can be infered from the computational graph of the network
→ Automatic Differentiation (AutoDiff)
Algorithm to compute weight updates based on the loss is called Backpropagation

Hypothesis space H =
{

f (x) : f (x) = τ ◦ φ ◦ σ(h) ◦ φ(h) ◦ σ(h−1) ◦ φ(h−1) ◦ ... ◦ σ(1) ◦ φ(1)(x)
}
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NEURAL NETWORKS – METHOD SUMMARY
Architecture

Input layer: original features x
Hidden layers: nonlinear transformation of previous layer φ(h) = σ(h−1)(φ(h−1))
Output layer: number of output neurons and activation depends on problem τ(φ)

Regression: one output neuron, τ = identity
Binary classification: one output neuron, τ = 1

1+exp(−θ>x)
(logistic sigmoid)

Multiclass Classification: g output neurons, τj =
exp(fj )∑g

j=1 exp(fj )
(softmax)

Empirical risk In general, compatible with any differentiable loss

Optimization

Variety of different optimizers, mostly based on some form of stochastic gradient descent (SGD)
Improvements:

(1) Accumulation of previous gradients→ Momentum
(2) Weight specific scaling based on previous squared gradients→ RMSProb
⇒ ADAM combines (1) and (2)

(3) Learning rate schedules, e.g., decaying or cyclical learning rates
Training progress is measured in full passes over the full training data, called epochs
Batch size is a hyperparameter and limited by input data dimension
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NEURAL NETWORKS – METHOD SUMMARY
Network types Large variety of architectures for different data modelities

Feedforward NNs / multi-layer perceptrons (MLPs): sequence of fully-connected layers⇒ tabular
data
Convolutional NNs (CNNs): sequence of feature map extractors with spatial awareness⇒ images, time
series
Recurrent NNs (RNNs): handling of sequential, variable-length information⇒ times series, text, audio
Transformers: Learning invariances from data, handling multiple/any data modalities

Convolutional network architecture

Recurrent network architecture Transformer network architecture
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NEURAL NETWORKS – METHOD SUMMARY
Hyperparameters

Architecture:

Lots of design choices⇒ tuning problem of its own.
Typically: hierachical optimization of components (cells) and macro structure of network
→ Neural Architecture Search (NAS)
Many predifined (well working) architectures exist for standard tasks

Training:

Initial learning rate and various regularization parameters
Number of epochs is determined by early-stopping
Data-augmentation, e.g., applying random rotations to input images

Foundation models

Enormous models trained on vast amounts of (general) data, e.g., all of wikipedia, in self-supervised
fashion
Used as starting point (pre-trained) and fine-tuned via transfer or few-shot learning for other tasks
requiring little data
Examples: GPT-3 for language, CLIP for vision-language, . . .
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PERFORMANCE ESTIMATION

For a trained model, we want to know its future performance.

Training works by ERM on Dtrain (inducer, loss, risk minimization):

I : D×Λ → H, (D,λ) 7→ f̂D,λ.

min
θ∈Θ

n∑

i=1

L
(

y (i), f
(

x(i) | θ
))

Due to effects like overfitting, we cannot simply use this training
error to gauge our model, this is likely optimistically biased.
(more on this later!)

We want: the true expected loss, a.k.a. generalization error.

To reliably estimate it, we need independent, unseen test data.

This simply simulates the application of the model in reality.

© Introduction to Machine Learning – 1 / 8
Performance Estimation 29 / 57



GE FOR A FIXED MODEL

GE for a fixed model: GE
(

f̂ , L
)
:= E

[
L
(

y , f̂ (x)
)
)
]

Expectation over a single, random test point (x, y) ∼ Pxy .

Estimator, if a dedicated test set is available (size m)

ĜE(̂f , L) :=
1
m

∑

(x,y)∈Dtest

[
L
(

y , f̂ (x)
)]

Learner

Fit

Model
   

Predict

Sample Data 
generating 

process

Loss?

Sample

NB: Very often, no dedicated test-set is available, and what we describe
here is not same as hold-out splitting (see later).
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INNER VS OUTER LOSS

Sometimes, we would like to evaluate our learner with a different
loss L or metric ρ.

Nomenclature: ERM and inner loss; evaluation and outer loss.

Different losses, if computationally advantageous to deviate from
outer loss of application; e.g., optimization faster with inner L2 or
maybe no implementation for outer loss exists.

Example: Linear binary classifier / Logistic regression.

Outside: We often want to eval with "nr of
misclassifed examples", so 0-1 loss.

Problem: 0-1 neither differentiable nor
continuous. Hence: Inner loss = binomial.
(0-1 actually NP hard).

For evaluation, differentiability is not required.
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TRAINING ERROR
Simply plugin predictions for data that model has been trained on:

ρ(ytrain,Ftrain) where Ftrain =




f̂Dtrain(x
(1)
train)

. . .

f̂Dtrain(x
(m)
train)




Fit Model
   

Predict

Train 
Error

Learner 

A.k.a. apparent error or resubstitution error.
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EXAMPLE 2: POLYNOMIAL REGRESSION

Sample data from 0.5 + 0.4 · sin(2πx) + ϵ
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x
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True function

We fit a d th-degree polynomial:

f (x | θ) = θ0 + θ1x + · · ·+ θdxd =
d∑

j=0

θjxj .
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EXAMPLE 2: POLYNOMIAL REGRESSION

Simple model selection problem: Which d?

Visual inspection vs quantitative MSE on training set:
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0.00 0.25 0.50 0.75 1.00
x

y

True function degree 1 3 9 Train set

d = 1: MSE = 0.036:
clearly underfitting

d = 3: MSE = 0.003:
pretty OK

d = 9: MSE = 0.001:
clearly overfitting

Using the train error chooses overfitting model of maximal complexity.
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TEST ERROR AND HOLD-OUT SPLITTING

Simulate prediction on unseen data, to avoid optimistic bias:

ρ(ytest,Ftest) where Ftest =




f̂Dtrain(x
(1)
test)

. . .

f̂Dtrain(x
(m)
test)




Partition data, e.g., 2/3 for train and 1/3 for test.

Fit Model
   

Predict

Test 
Error

Dataset 

Split into
Tain and Test

Repeat = Resample

Learner 

A.k.a. holdout splitting.
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EXAMPLE: POLYNOMIAL REGRESSION

Previous example:
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Train set
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f (x | θ) = θ0 + θ1x + · · ·+ θdxd =
d∑

j=0

θjxj .
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EXAMPLE: POLYNOMIAL REGRESSION

Now with fresh test data:
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x

y
degree

1

3

9

Train set

Test set

True function

d = 1: MSE = 0.038: clearly underfitting

d = 3: MSE = 0.002: pretty OK

d = 9: MSE = 0.046: clearly overfitting

While train error monotonically decreases in d , test error shows that
high-d polynomials overfit.
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TEST ERROR

Let’s plot train and test MSE for all d :

2 4 6 8 10
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00
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test error

Underfitting,
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Increasing model complexity tends to cause

a decrease in training error, and

a U-shape in test error
(first underfit, then overfit, sweet-spot in the middle).
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UNDER- AND OVERFITTING IN REGRESSION

Poly-Regression, on data from sinusoidal function

LM underfits, high-d overfits
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METRICS FOR REGRESSION

Commonly used evaluation metrics include:

Sum of Squared Errors (SSE): ρSSE(y,F ) =
m∑

i=1
(y (i) − ŷ (i))2

Mean Squared Error (MSE): ρMSE(y,F ) = 1
m

m∑
i=1

SSE

Root Mean Squared Error (RMSE): ρRMSE(y,F ) =
√

MSE

R-Squared: ρR2(y,F ) = 1 −
m∑

i=1
(y(i)−ŷ(i))2

m∑
i=1

(y(i)−ȳ)2

Mean Absolute Error (MAE):

ρMAE(y,F ) = 1
m

m∑
i=1

|y (i) − ŷ (i)| ∈ [0;∞)
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METRICS FOR CLASSIFICATION

Commonly used evaluation metrics include:

Accuracy:
ρACC = 1

m

∑m
i=1[y

(i) = ŷ (i)] ∈ [0, 1].

Misclassification error (MCE):
ρMCE = 1

m

∑m
i=1[y

(i) ̸= ŷ (i)] ∈ [0, 1].

Brier Score:
ρBS = 1

m

∑m
i=1

(
π̂(i) − y (i)

)2

Log-loss:
ρLL = 1

m

∑m
i=1

(
−y (i) log

(
π̂(i)
)
−
(
1 − y (i)

)
log
(
1 − π̂(i)

))
.

The probabalistic metrics, Brier Score and Log-Loss penalize false
confidence, i.e. predicting the wrong label with high probability, heavily.
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PROBABILITIES: BRIER SCORE

Measures squared distances of probabilities from the true class labels:

ρBS =
1
m

m∑

i=1

(
π̂(i) − y (i)

)2

Fancy name for MSE on probabilities.

Usual definition for binary case; y (i) must be encoded as 0 and 1.

right

wrong wrong
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PROBABILITIES: LOG-LOSS

Logistic regression loss function, a.k.a. Bernoulli or binomial loss, y (i)

encoded as 0 and 1.

ρLL =
1
m

m∑

i=1

(
−y (i) log

(
π̂(i)
)
−
(

1 − y (i)
)
log
(

1 − π̂(i)
))

.

right

wrong wrong

right0

1

2

3

4

0.00 0.25 0.50 0.75 1.00

π̂(x)

LL

true.label

0

1

Optimal value is 0, “confidently wrong” is penalized heavily.

Multi-class version: ρLL,MC = − 1
m

m∑
i=1

g∑
k=1

o(i)
k log

(
π̂
(i)
k

)
.
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LABELS: MCE & ACC

The misclassification error rate (MCE) counts the num-
ber of incorrect predictions and presents them as a rate:

ρMCE =
1
m

m∑

i=1

[y (i) ̸= ŷ (i)] ∈ [0, 1].

MCE

?
≠
?
≠
?
≠
?
≠

Accuracy (ACC) is defined in a similar fashion for correct
classifications:

ρACC =
1
m

m∑

i=1

[y (i) = ŷ (i)] ∈ [0, 1].

ACC

?
=
?
=
?
=
?
=

If the data set is small this can be brittle.

MCE says nothing about how good/skewed predicted probabilities are.

Errors on all classes are weighted equally, which is often inappropriate.
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CLASS IMBALANCE

Assume a binary classifier diagnoses a serious medical condition.

Label distribution is often imbalanced, i.e, not many people have
the disease.

Evaluating on mce is often inappropriate for scenarios with
imbalanced labels:

Assume that only 0.5 % have the disease.
Always predicting “no disease” has an mce of 0.5 %,
corresponding to very high accuracy.
This sends all sick patients home → bad system

This problem is known as the accuracy paradox.
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IMBALANCED COSTS

Another point of view is imbalanced costs.

In our example, classifying a sick patient as healthy should incur a
much higher cost than classifying a healthy patient as sick.

The costs depend a lot on what happens next: we can well
assume that our system is some type of screening filter, and often
the next step after labeling someone as sick might be a more
invasive, expensive, but also more reliable test for the disease.

Erroneously subjecting someone to this step is undesirable
(psychological, economic, medical expense), but sending
someone home to get worse or die seems much more so.

Such situations not only arise under label imbalance, but also
when costs differ (even though classes might be balanced).

We could see this as imbalanced costs of misclassification, rather
than imbalanced labels; both situations are tightly connected.
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LABELS: ROC METRICS

From the confusion matrix (binary case), we can calculate "ROC"
metrics.

True Class y

+ −

Pred. + TP FP ρPPV = TP
TP+FP

ŷ − FN TN ρNPV = TN
FN+TN

ρTPR = TP
TP+FN ρTNR = TN

FP+TN ρACC = TP+TN
TOTAL

True positive rate ρTPR : how many of the true 1s did we predict as 1?

True Negative rate ρTNR : how many of the true 0s did we predict as 0?

Positive predictive value ρPPV : if we predict 1, how likely is it a true 1?

Negative predictive value ρNPV : if we predict 0, how likely is it a true 0?

Accuracy ρACC : how many instances did we predict correctly?
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MORE METRICS AND ALTERNATIVE
TERMINOLOGY

Unfortunately, for many concepts in ROC, 2-3 different terms exist.

Clickable version/picture source Interactive diagram
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LABELS: F1 MEASURE

It is difficult to achieve high positive predictive value and high true
positive rate simultaneously.

A classifier predicting more positive will be more sensitive (higher ρTPR),
but it will also tend to give more false positives (lower ρTNR , lower ρPPV ).

A classifier that predicts more negatives will be more precise (higher
ρPPV ), but it will also produce more false negatives (lower ρTPR).

The F1 score balances two conflicting goals:

1 Maximizing positive predictive value

2 Maximizing true positive rate

ρF1 is the harmonic mean of ρPPV and ρTPR :

ρF1 = 2 · ρPPV · ρTPR

ρPPV + ρTPR

Note that this measure still does not account for the number of true negatives.

© Introduction to Machine Learning – 9 / 12
Performance Measures 50 / 57



WHICH METRIC TO USE?

As we have seen, there is a plethora of methods.
→ This leaves practitioners with the question of which to use.

Consider a small benchmark study.

We let k -NN, logistic regression, a classification tree, and a random forest
compete on classifying the credit risk data.
The data consist of 1000 observations of borrowers’ financial situation and
their creditworthiness (good/bad) as target.
Predicted probabilities are thresholded at 0.5 for the positive class.
Depending on the metric we use, learners are ranked differently according
to performance (value of respective performance measure in parentheses):

3 (0.7320)1 (0.7700)4 (0.7270) 2 (0.7490)

3 (0.7293)1 (0.7902)4 (0.7092) 2 (0.7731)

4 (0.8130)1 (0.8488)3 (0.8179) 2 (0.8279)

2 (0.7925)3 (0.7842)4 (0.7665) 1 (0.7947)

1 (0.4911)3 (0.4072)4 (0.3764) 2 (0.4797)

4 (0.8357)1 (0.9257)2 (0.8777) 3 (0.8647)

ACC

AUC

F1

PPV

TNR

TPR

k−NN logistic regression random forest CART
learner

m
et

ric
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LABELS: ROC SPACE

For comparing classifiers, we characterize them by their TPR and
FPR values and plot them in a coordinate system.
We could also use two different ROC metrics which define a
trade-off, for instance, TPR and PPV.

C1

C2

C3

unclear winner

dominates
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True Class y
+ −

Pred. + TP FP
ŷ − FN TN

TPR =
TP

TP + FN

FPR =
FP

FP + TN
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FROM PROBABILITIES TO LABELS: ROC CURVE

Remember: Both probabilistic and scoring classifiers can output
classes by thresholding:

h(x) = [π(x) ≥ c] or h(x) = [f (x) ≥ cf ].

To draw a ROC curve:

1 Rank test observations on decreasing score.

2 Start with c = 1, so we start in (0, 0); we predict
everything as negative.

3 Iterate through all possible thresholds c and

proceed for each observation x as follows:

If x is positive, move TPR 1/n+ up,
as we have one TP more.
If x is negative, move FPR 1/n− right,
as we have one FP more.
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DRAWING ROC CURVES
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c = 0.3
→ TPR = 0.833
→ FPR = 0.5
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DRAWING ROC CURVES
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c = 0
→ TPR = 1
→ FPR = 1
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ROC CURVE PROPERTIES

The closer the curve to the
top-left corner, the better.

If ROC curves cross, a
different model might be better
in different parts of the ROC
space. 0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
FPR

T
P

R

model

bad

ok1

ok2

very good

Small thresholds will very liberally predict the positive class, and
result in a potentially higher FPR, but also higher TPR.

High thresholds will very conservatively predict the positive class,
and result in a lower FPR and TPR.

As we have not defined the trade-off between false positive and
false negative costs, we cannot easily select the "best" threshold.
→ Visual inspection of all possible results seems useful.
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AUC: AREA UNDER ROC CURVE

AUC ∈ [0, 1] is a single metric to evaluate scoring classifiers –
independent of the chosen threshold.

AUC = 1: perfect classifier
AUC = 0.5: random, non-discriminant classifier
AUC = 0: perfect, with inverted labels
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