Skip to contents

Returns a heat map of the AIC or BIC for a fitted CVN

Usage

plot_information_criterion(
  cvn,
  criterion = c("bic", "aic", "ebic"),
  use_gammas = TRUE,
  show_minimum = TRUE,
  title = "",
  xlabel = NULL,
  ylabel = NULL,
  legend_label = NULL,
  limits = c(NA, NA)
)

Arguments

cvn

Fitted CVN, see CVN

criterion

The information criterion, must be either 'aic' or 'bic'. Default: 'bic'

use_gammas

If TRUE, plots the \(\gamma\)-values. Otherwise, the \(\lambda\)-values are used

show_minimum

If TRUE, an orange dot is put on the point with the minimum value of the information criterion is. If FALSE, no dot is added. Default: TRUE.

title

Title plot (Default is none)

xlabel

Label for the \(x\)-axis. Default depends on use_gammas. If use_gammas = TRUE, then the label is 'gamma1'. Otherwise, 'lambda1'

ylabel

Label for the \(x\)-axis. Default depends on use_gammas. If use_gammas = TRUE, then the label is 'gamma1'. Otherwise, 'lambda1'

legend_label

Title for the legend. Default depends on criterion. If 'aic', then the label is 'AIC'. Otherwise, 'BIC'.

limits

The limits for the values of the Hamming distance

Value

A heatmap plot

Examples

data(grid)
m <- 9

W <- create_weight_matrix(type="grid", 3, 3)
cvn <- CVN(grid, W, 
           lambda1 = 1:2, lambda2 = .5, n_cores = 1)
#> Estimating a CVN with 9 graphs...
#> 
#> Number of cores: 1
#> Uses a warmstart...
#> 
#> -------------------------
#> iteration 1  |  2.180956
#> iteration 2  |  0.115992
#> iteration 3  |  0.085701
#> iteration 4  |  0.032432
#> iteration 5  |  0.027966
#> iteration 6  |  0.014144
#> iteration 7  |  0.011243
#> iteration 8  |  0.008368
#> iteration 9  |  0.006504
#> iteration 10  |  0.005949
#> -------------------------
#> iteration 11  |  0.004572
#> iteration 12  |  0.003524
#> iteration 13  |  0.003235
#> iteration 14  |  0.002473
#> iteration 15  |  0.002350
#> iteration 16  |  0.002180
#> iteration 17  |  0.001924
#> iteration 18  |  0.001890
#> iteration 19  |  0.001638
#> iteration 20  |  0.001591
#> -------------------------
#> iteration 21  |  0.001375
#> iteration 22  |  0.001291
#> iteration 23  |  0.000999
#> iteration 24  |  0.000962
#> iteration 25  |  0.000888
#> iteration 26  |  0.000848
#> iteration 27  |  0.000777
#> iteration 28  |  0.000637
#> iteration 29  |  0.000600
#> iteration 30  |  0.000599
#> -------------------------
#> iteration 31  |  0.000542
#> iteration 32  |  0.000550
#> iteration 33  |  0.000513
#> iteration 34  |  0.000451
#> iteration 35  |  0.000430
#> iteration 36  |  0.000411
#> iteration 37  |  0.000398
#> iteration 38  |  0.000387
#> iteration 39  |  0.000367
#> iteration 40  |  0.000386
#> -------------------------
#> iteration 41  |  0.000354
#> iteration 42  |  0.000351
#> iteration 43  |  0.000360
#> iteration 44  |  0.000361
#> iteration 45  |  0.000329
#> iteration 46  |  0.000318
#> iteration 47  |  0.000308
#> iteration 48  |  0.000294
#> iteration 49  |  0.000306
#> iteration 50  |  0.000275
#> -------------------------
#> iteration 51  |  0.000265
#> iteration 52  |  0.000241
#> iteration 53  |  0.000233
#> iteration 54  |  0.000230
#> iteration 55  |  0.000216
#> iteration 56  |  0.000234
#> iteration 57  |  0.000191
#> iteration 58  |  0.000187
#> iteration 59  |  0.000171
#> iteration 60  |  0.000165
#> -------------------------
#> iteration 61  |  0.000168
#> iteration 62  |  0.000186
#> iteration 63  |  0.000168
#> iteration 64  |  0.000157
#> iteration 65  |  0.000152
#> iteration 66  |  0.000147
#> iteration 67  |  0.000146
#> iteration 68  |  0.000153
#> iteration 69  |  0.000139
#> iteration 70  |  0.000135
#> -------------------------
#> iteration 71  |  0.000131
#> iteration 72  |  0.000127
#> iteration 73  |  0.000124
#> iteration 74  |  0.000120
#> iteration 75  |  0.000117
#> iteration 76  |  0.000114
#> iteration 77  |  0.000121
#> iteration 78  |  0.000124
#> iteration 79  |  0.000113
#> iteration 80  |  0.000106
#> -------------------------
#> iteration 81  |  0.000120
#> iteration 82  |  0.000114
#> iteration 83  |  0.000103
#> iteration 84  |  0.000105
#> iteration 85  |  0.000102
#> iteration 86  |  0.000097
#> -------------------------
#> iteration 1  |  1.771692
#> iteration 2  |  0.153946
#> iteration 3  |  0.092411
#> iteration 4  |  0.072031
#> iteration 5  |  0.054334
#> iteration 6  |  0.026809
#> iteration 7  |  0.020415
#> iteration 8  |  0.016228
#> iteration 9  |  0.012340
#> iteration 10  |  0.009765
#> -------------------------
#> iteration 11  |  0.008402
#> iteration 12  |  0.006927
#> iteration 13  |  0.006604
#> iteration 14  |  0.005755
#> iteration 15  |  0.004868
#> iteration 16  |  0.004128
#> iteration 17  |  0.003626
#> iteration 18  |  0.003184
#> iteration 19  |  0.002952
#> iteration 20  |  0.002483
#> -------------------------
#> iteration 21  |  0.002288
#> iteration 22  |  0.002080
#> iteration 23  |  0.001743
#> iteration 24  |  0.001602
#> iteration 25  |  0.001633
#> iteration 26  |  0.001355
#> iteration 27  |  0.001302
#> iteration 28  |  0.001151
#> iteration 29  |  0.001054
#> iteration 30  |  0.001003
#> -------------------------
#> iteration 31  |  0.000923
#> iteration 32  |  0.000909
#> iteration 33  |  0.000864
#> iteration 34  |  0.000876
#> iteration 35  |  0.000768
#> iteration 36  |  0.000779
#> iteration 37  |  0.000663
#> iteration 38  |  0.000621
#> iteration 39  |  0.000607
#> iteration 40  |  0.000589
#> -------------------------
#> iteration 41  |  0.000553
#> iteration 42  |  0.000547
#> iteration 43  |  0.000486
#> iteration 44  |  0.000442
#> iteration 45  |  0.000406
#> iteration 46  |  0.000362
#> iteration 47  |  0.000356
#> iteration 48  |  0.000340
#> iteration 49  |  0.000332
#> iteration 50  |  0.000369
#> -------------------------
#> iteration 51  |  0.000321
#> iteration 52  |  0.000314
#> iteration 53  |  0.000301
#> iteration 54  |  0.000290
#> iteration 55  |  0.000282
#> iteration 56  |  0.000274
#> iteration 57  |  0.000255
#> iteration 58  |  0.000257
#> iteration 59  |  0.000240
#> iteration 60  |  0.000228
#> -------------------------
#> iteration 61  |  0.000224
#> iteration 62  |  0.000220
#> iteration 63  |  0.000214
#> iteration 64  |  0.000206
#> iteration 65  |  0.000189
#> iteration 66  |  0.000191
#> iteration 67  |  0.000201
#> iteration 68  |  0.000180
#> iteration 69  |  0.000175
#> iteration 70  |  0.000175
#> -------------------------
#> iteration 71  |  0.000168
#> iteration 72  |  0.000175
#> iteration 73  |  0.000149
#> iteration 74  |  0.000143
#> iteration 75  |  0.000139
#> iteration 76  |  0.000136
#> iteration 77  |  0.000135
#> iteration 78  |  0.000128
#> iteration 79  |  0.000125
#> iteration 80  |  0.000122
#> -------------------------
#> iteration 81  |  0.000119
#> iteration 82  |  0.000116
#> iteration 83  |  0.000113
#> iteration 84  |  0.000111
#> iteration 85  |  0.000113
#> iteration 86  |  0.000104
#> iteration 87  |  0.000110
#> iteration 88  |  0.000096
cvn$results          
#>   id lambda1 lambda2      gamma1      gamma2 converged        value
#> 1  1       1     0.5 0.002469136 0.000308642      TRUE 9.684448e-05
#> 2  2       2     0.5 0.004938272 0.000308642      TRUE 9.643472e-05
#>   n_iterations      aic      bic     ebic edges_median edges_iqr
#> 1           87 14493.34 16483.69 20002.04           42         1
#> 2           89 13967.70 15911.15 19346.61           42         2

# The smaller the IC value, the better the fit. 
plot_information_criterion(cvn, criterion = "aic")

plot_information_criterion(cvn, criterion = "bic")

plot_information_criterion(cvn, criterion = "ebic")