Estimates a graph for which there are no observation based on a previously fitted CVN model
Value
A 'cvn_interpolated' object, which is a list with
adj_matrices
A list of adjacency matrix. One for each pair of \((\lambda_1, \lambda_2)\) values. The entries are
1
if there is an edge,0
otherwise. The matrices are sparse using packageMatrix
m
Number of graphs
p
Number of variables
weights
The weights used for interpolation
truncate
Truncation value
n_lambda_values
Total number of \((\lambda_1, \lambda_2)\) value combinations
results
. It consists of two columns:
lambda1
\(\lambda_1\) value
lambda2
\(\lambda_2\) value
Examples
path <- system.file("cvnfit.RData", package = "CVN")
load(path)
interpolate <- interpolate(fit, c(0,0,0,0,0,0,0,0.5,0.5), truncate = 0.05)
fit10 <- combine_cvn_interpolated(fit, interpolate)
fit10 <- visnetwork_cvn(fit10)
#> Warning: Works only if the original cvn was combined with an interpolated cvn using
#> the function 'combine_cvn_interpolated'.
#> Creating visNetwork plots for the CVN...
#>
#> Number of graphs: 10
#> Number of different lambda values: 1
#> Creating nodes...
#> Determining the 'core graphs'...
#> Create the subset of edges in the core graphs...
#>
#>
#> Create plots given the determined edges...
#>
if (requireNamespace("htmltools", quietly = TRUE)) {
htmltools::browsable(htmltools::tagList(
htmltools::div(style = "display: grid; grid-template-columns: repeat(3, 1fr);
column-gap: 1px; row-gap: -10px",
fit10$plots[[1]][8:10])))
} else {
plot10$plots[[1]][8:10]
}